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Abstract. Aiming at providing a solid foundation to the creation of
future affect detection applications in HCI, we propose to analyze hu-
man expressive gesture by computing movement Sample Entropy (Sam-
pEn). This method provides two main advantages: (i) it is adapted to
the non-linearity and non-stationarity of human movement; (ii) it allows
a fine-grain analysis of the information encoded in the movement fea-
tures dynamics. A realtime application is presented, implementing the
SampEn method. Preliminary results obtained by computing SampEn
on two expressive features, smoothness and symmetry, are provided in a
video available on the web.
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1 Introduction

When do bodily channels convey actual information about a person’s emotional
state?

Research on nonverbal communication corroborate the view that bodily ex-
pressions constitute a relevant source of affective information [22,33,35]. In the
last 10 years, an increasing number of affect detection systems have been de-
veloped and a great number of features characterizing an affective content have
been proposed: movement direction and kinematics, arm extension and so on. As
observed by Calvo [2], an assumption in Affective Computing is that emotions oc-
cur occasionally during usually affective-free interaction whereas contemporary
theories maintain that affect is constantly influencing behavior. The challenge
is to “model these perennially present, but somewhat subtle, manifestations of
emotion” (p.32, [2]).

In this paper, we address this challenge by considering dynamic entropy of
expressive features. Each movement potentially embodies an affect-related in-
formation content but this affect-related information content is subtly encoded
in the temporal evolution of the movement features. For example, an upward
movement may convey several affective meanings: when it follows a still pos-
ture, it may convey surprise; when it is a portion of many upward movements
expressing anger, it may confirm the subject’s angry state.

We develop a real-time affect detection system that is built on the Sample
Entropy (SampEn) method. Tests have been conducted on a reduced amount of
visual information related to human upper-body movements [13].
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The paper is organized as follows: Section 2 introduces the key concepts of our
approach; in Section 3 we detail a realtime application for computing dynamic
entropy of movement expressive features; we conclude the paper in Section 4.

2 Background

2.1 Bounding Triangle

Our framework is based on a minimal and efficient representation of human
upper body movement. We consider a bounding triangle related to the three
blobs’ centroids of the user’s hands and head (see Figure 1). Recent studies
[10,13] showed that this minimal representation of human upper body movement
provide sufficient information to automatically distinguish between meaningful
groups of emotions, related to the four quadrants of the Russel’s valence/arousal
space [27]. Previous evaluation of emotion recognition performance based on this
minimal representation further assessed that human observers could discriminate
between high and low arousal emotions [10].

By basing on this minimal user representation we ensure: (i) robust expres-
sivity/emotional analysis; (ii) simplified identification of dynamics factors con-
tributing to the communication of an expressive (e.g., emotional) content; (iii)
real-time implementation of our framework.

2.2 Dynamic Expressive Behavior Analysis

Starting from the Kurtenbach and Hulteen’s definition of gesture as “a movement
of the body that contains information”, a gesture is considered expressive if the
information it carries has an expressive content, i.e., an “implicit message” [6].

Expressive content of a gesture can provide information on the emotional state,
mood and personality of the person [34]. Researchers [16][9][34] have investigated
human expressivemotion and determined qualifiers such as slow/fast, small/large,
weak/energetic, unpleasant/pleasant. Behavior expressivity has been correlated
to energy in communication, to the relation between temporal/spatial character-
istics of gestures, and/or to personality/emotion.

According to Camurri et al.’s framework [4], expressive gesture analysis is
accomplished by three subsequent layers of processing: low-level physical mea-
sures (e.g., position, speed, acceleration of body parts); overall gesture features
(e.g., motion fluency, impulsiveness); high-level information describing semantic
properties of gestures (affect, emotion, attitudes).

A growing body of research in affecting computing and in psychology argue
that temporal dynamics of human behavior (i.e., timing and duration of be-
havioral features) can be decisive in distinguishing between observed behavioral
expressions [22][18]. [11] extended pilot studies by Castellano et al. [5] and de-
fined a set of dynamics features, derived from the temporal profiles of expressive
variations (e.g., the ratio between the gesture movement main peak duration and
the total gesture duration, or the number of gesture movement local maxima in
a given time span).
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The system developed in [13] for characterizing expressive behavior showed
that dynamic aspects of motion features are complementary to postural and
gesture shape-related information.

2.3 Entropy Measure

The majority of the computational tools used for analyzing behavior dynamics
[5] are based on traditional time and frequency domain measures but they fail
to account for some properties of human movement: (i) non-linearity (small
perturbations can cause large effects) and (ii) non-stationarity (the statistical
properties change with time).

The concept of entropy has first been coined in thermodynamics referring
to the amount of energy that is inaccessible for work (Shannon [30] applied
the concept of information entropy to the development of information theory of
communication. First entropy interpretation of human movement variability in
terms of information theory constructs were proposed by Fitts to evaluate speed-
accuracy task [8]. This classic investigation led to numerous studies examining
motor behavior from an information processing perspective ([15] for a review).
However, these studies have been often restricted to observing, for example, what
happens in single points of a trajectory without considering dynamics, i.e., that
consecutive points are part of the same trajectory.

In time series analysis, entropy has been newly defined as a quantity measuring
the mean rate of new information production [25]. The Kolmogorov-Sinai (KS)
entropy measures the decrease of uncertainty by knowing the current state of
the system given its past history. Methods to estimate the K-S entropy were first
developed in the field of nonlinear dynamic analysis and chaos [Lake, 16,20] by
Grassberger and Procaccia [14], Eckmann and Ruelle [7].

The ApEn statistic and its last, most used modification, SampEn (Sample
Entropy) method, was developed within this conceptual framework, respectively
by Pincus [23] and Richman and Moorman [25], to compute the K-S entropy
for real-world, noisy time series of finite length. High values of SampEn indicate
disorder, smaller values indicate greater regularity. SampEn has been applied to
a variety of physiological (heart rate, EMG, see [29] for a review).

Most recent application deal with behavioral data (e.g., investigating postu-
ral control mechanisms [24]) and some specifically address affective and social
dynamics [12,17].

3 Realtime Implementation

Figure 1 shows the application we developed to perform realtime estimation of
entropy in dynamic expressive movement features. The current implementation
of our application does not perform any affect analysis: that is, according to
the framework described by Camurri et al. [4] our application performs low-
level and gesture-level measurements. The application has been implemented in
the EyesWeb XMI platform (http://www.eyesweb.org), including the EyesWeb
Gesture Processing Library for motion features extraction.

http://www.eyesweb.org
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Fig. 1. The user’s silhouette is captured through a Kinect acquisition device and body
parts are extracted. Head and hands positions are sent to the EyesWeb XMI platform
that computes the smoothness and symmetry SampEn.

3.1 Extracting Bounding Triangle Form Human Silhouette

We track the user’s body using a Kinect acquisition device (http://www.xbox.
com/en-US/kinect). Figure 2 shows and example of such tracking: on the left
image the user’s silhouette is extracted from the background; on the right image
the user silhouette is segmented into body parts (e.g., head, shoulders, trunk
and so on) by the functions provided by the Kinect open driver OpenNI [20].

Fig. 2. Realtime tracking of user body configuration performed using Kinect

As the user enters the application space for the first time an initialization
phase is required: the user must stand for about 3 seconds in the PSI pose
(hands up, legs slightly opened).

Then the Kinect tracking is started and 3 user’s body parts are considered:
(1) head, (2) left hand and (3) right hand. Their 2D coordinates are extracted
realtime and provided as input to the computation of dynamic features symmetry
and smoothness, see Section 3.2. Finally, the dynamic features values as provided
as input to the entropy estimation modules, described in Section 3.3.

3.2 Extracting Dynamic Features: Smoothness and Symmetry
Index

As explained in Section 3, we focus movement analysis on a simplification of
the human body: the bounding triangle, determined by the user’s head as the
top vertex and the user’s hands as the triangle basis. An example of bounding
triangle is shown in Figure 1.

http://www.xbox.
com/en-US/kinect
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Smoothness Index (SmI). Research in [32] demonstrates a correspondence
between (i) smooth trajectories performed by human arms, (ii) minimization of
the third-order derivative of the hand position (called jerk in physics) and (iii)
correlation between hand trajectory curvature and velocity. In our work we use
an approach similar to (iii) to determine if a trajectory is smooth or not starting
from the trajectory curvature and velocity.

The left and right hand positions (xl, yl) and (xr, yr) are buffered in two time
series consisting of 30 elements. These structures are managed as FIFO buffers,
that is, as a new element is pushed in the structure, the oldest element pops out.

The time series are then provided as input to the smoothness computation
algorithm: for every sample (xh, yh) (where h coiuld be l or r) in the buffer we
compute curvature k and velocity v as:

kh(xh, yh) =
∣∣∣∣
xh

′yh
′′ − yh

′xh
′′

(xh
′2 + yh

′2) 3
2

∣∣∣∣ vh(xh, yh) =
√

xh
′2 + yh

′2 (1)

where xh
′, yh

′, xh
′′ and yh

′′ are the first and second order derivatives of xh and
yh for hand h. To compute derivatives values we apply a Savitzky-Golay filter
[28] that provides as output both the filtered signal and an approximation of the
n− th order smoothed derivatives. As mentioned above, we define our algorithm
for computing smoothness by taking inspiration from [32], that is, we compute
correlation between trajectory curvature and velocity. We consider the Pearson
correlation coefficient for two variables, that is, in our algorithm, log(kh) and
log(vh):

ρh(kh, vh) =
σlog(kh),log(vh)

σlog(kh)σlog(vh)
(2)

However, kh and vh are computed over a relatively “short” time window, so we
could approximate the covariance σlog(kh),log(vh) with 1, as the kh and vh variate
(or not) approximately at the same time:

ρ′h(kh, vh) =
1

σlog(kh)σlog(vh)
(3)

That is, the Smoothness Index SmIh for hand h is equal to ρ′h(kh, vh). As we
compute these value for both the left and right hand, we finally compute the
mean value of both hands SmI:

SmI = (SmIl + SmIr)/2 (4)

Symmetry Index (SyI). Symmetry/asymmetry of emotion expression has
been first studied in face expressions. Results revealed general hemisphere dom-
inance in the control of emotional expression. A seminal work by [1] using static
pictures of emotional expressions with one side of the face replaced by the mirror
image of the other (chimeric face stimuli) showed that left hemiface is further
related to expressivity. Roether et al. recently showed that human gait display
lateral asymmetries also in human emotional full-body movement [26]. Motion
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capture data of twenty four actors recorded during neutral walking and emotion-
ally expressive walking (anger, happiness, sadness) showed that the left body side
moved with significantly higher amplitude and energy. Perceptual validation of
the results were conducted through the creation of chimeric walkers using the
joint-angle trajectories of one body half to animate symmetric puppets.

A few studies accounted for the relationship between upper-body movements
symmetry and expressivity. Merhabian showed in particular that arm-position
asymmetry was a relevant behavioral feature to identify “relax” attitude and
relative high social status of a person within a group [19].

Spatial hands symmetry is computed with respect to the vertical axis and
with respect to the horizontal axis. Horizontal Symmetry Index (SyIhorizontal)
is computed from the position of the barycenter and the left and right edges of
the bounding triangle that relate the head and the two hands (Eq 5).

SyIhorizontal =
||xB − xL|− |xB − xR||

|xR − xL|
(5)

where xB is the x coordinate of the barycentre, xL is the x coordinate of the left
edge of the bounding triangle and xR is the x coordinate of the right edge of the
bounding triangle. Similarly, vertical Symmetry Index (SyIvertical) is computed
by the difference between the y coordinates of hands. A first measure related to
spatial symmetry (SyI) results from the ratio of the measures of horizontal and
vertical symmetries (Eq 6).

SyI =
SyIhorizontal

SyIvertical
(6)

Dynamic update of features. Movement features such as symmetry and
smoothness are dynamical features, as explained in [3]: their updated values do
not only depend on the last frame of the user’s movement data (i.e., the last
position of the user’s head and hands) but it should also consider the recent
user movement history. We include such dynamic properties by performing an
incremental update of movement features, as shown in Figure 3.

To do that, we store the features values at previous times t − 1 and t − 2:
SyI(t−1), SyI(t−2), SmI(t−1), SmI(t−2). At time t, we compute the detected
movement features values SyIdet(t) and SmIdet(t), as explained above. Finally
we update movement features values by weighting the detected values by the
difference between the current and previous feature values:

SyI(t) = SyI(t− 1)+ ((SyIdet(t)−SyI(t− 1)) ∗ |SyI(t− 1)−SyI(t− 2)|) (7)

SmI(t) = SmI(t−1)+((SmIdet(t)−SmI(t−1))∗|SmI(t−1)−SmI(t−2)|) (8)

In our application, the dynamically updated values of SyI(t) and SmI(t) are used
to compute Sample Entropy as described in the following Section.
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Fig. 3. Dynamic update of movement features

3.3 Computing SampEn

The following algorithm for computing SampEn is introduced in [25].
Given a standardized one-dimensional discrete time series of length N , X =

{x1, ..., xi..., xN}:

1. construct vectors of length m (similarly to the time delay embedding proce-
dure) [31,21],

ui(m) = {xi, ..., xi+m−1}, 1 ≤ i ≤ N − m (9)

2. compute the correlation sum Um
i (r) to estimate similar subsequences (or

template vectors) of length m within the time series:

Um
i (r) =

1
(N − m − 1)

N−m∑

i=1,i$=j

Θ(r− ‖ ui(m) − uj(m) ‖∞) (10)

where ui(m) and uj(m) are the template vectors of length m formed from
the standardized time series, at time i and j respectively, N is the number of
samples in the time series, r is the tolerance (or radius), Θ is the Heaviside
function, and ‖‖∞ is the maximum norm defined by ‖ ui(m)−uj(m) ‖∞) =
max0≤k≤m−1 | xj+k − xi+k |.

3. calculate the average of Um
i , i.e., the probability that two vectors will match

in the m-dimensional reconstructed state space

Um(r) =
1

(N − m)

N−m∑

i=1

Um
i (r) (11)

4. set m = m + 1 and repeat steps 1-4
5. calculate the sample entropy of Xn

SampEn(Xn, m, r) = −ln
Um+1(r)
Um(r)

(12)
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Sample Entropy computes the negative average natural logarithm of the con-
ditional probability that subsequences similar for m points in the time series
remain similar (as defined by Eq. 3) when one more point (m + 1) is added to
those sequences. Small values of SampEn indicate regularity.

In the proposed implementation, we compute SampEn on two time series
containing the values of the two dynamic features SmI and SyI, that is, given:

SmIts = {SmI(t − N), ..., SmI(t)}, SyIts = {SyI(t − N), ..., SyI(t)} (13)

we compute:
SampEn(SmIts, m, r), SampEn(SyIts, m, r) (14)

3.4 Output

An example of the output provided by our application is provided in Figure 4.
A demo video is available at:
http://www.mauriziomancini.org/downloads/acii2011.m4v

Fig. 4. An example of SampEn computation: user’s smoothness is constant (high)
between t1 and t2, so SampEn(SmI) is zero; then, between t2 and t3 smoothness
decreases, so SampEn(SmI) increases; user’s symmetry decreases between t4 and t5,
so SampEn(SyI) increases; finally, symmetry is constant (low) between t5 and t6, so
SampEn(SyI) is zero

4 Conclusion

Our research work aims to contribute to develop affective detection applications.
To provide solid foundations for such applications, we suggest that expressive

http://www.mauriziomancini.org/downloads/acii2011.m4v
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gesture analysis should consider the information content conveyed by movement
features such as smoothness and symmetry. We also propose to compute Sample
Entropy, a measure adapted to the non-linear dynamics of human movement.

Future work includes: (a) applying the proposed approach to realtime clas-
sification of emotion portrayals to refine the evaluation in terms of recognition
performance, error analysis and real time aspects; (b) extension to 3D analy-
sis (using the Kinect device) to include other significant information, such as
distance and forward or backward movement with respect to camera or person.

Acknowledgements. This work is partly supported by the EU FP7 project
MIROR (the project is co-funded by the European Community under the Infor-
mation and Communication Technologies (ICT) theme of the Seventh Frame-
work Programme, grant agreement 258338).
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